Quantitative evaluation of muscle synergy models: a single-trial task decoding approach
نویسندگان
چکیده
Muscle synergies, i.e., invariant coordinated activations of groups of muscles, have been proposed as building blocks that the central nervous system (CNS) uses to construct the patterns of muscle activity utilized for executing movements. Several efficient dimensionality reduction algorithms that extract putative synergies from electromyographic (EMG) signals have been developed. Typically, the quality of synergy decompositions is assessed by computing the Variance Accounted For (VAF). Yet, little is known about the extent to which the combination of those synergies encodes task-discriminating variations of muscle activity in individual trials. To address this question, here we conceive and develop a novel computational framework to evaluate muscle synergy decompositions in task space. Unlike previous methods considering the total variance of muscle patterns (VAF based metrics), our approach focuses on variance discriminating execution of different tasks. The procedure is based on single-trial task decoding from muscle synergy activation features. The task decoding based metric evaluates quantitatively the mapping between synergy recruitment and task identification and automatically determines the minimal number of synergies that captures all the task-discriminating variability in the synergy activations. In this paper, we first validate the method on plausibly simulated EMG datasets. We then show that it can be applied to different types of muscle synergy decomposition and illustrate its applicability to real data by using it for the analysis of EMG recordings during an arm pointing task. We find that time-varying and synchronous synergies with similar number of parameters are equally efficient in task decoding, suggesting that in this experimental paradigm they are equally valid representations of muscle synergies. Overall, these findings stress the effectiveness of the decoding metric in systematically assessing muscle synergy decompositions in task space.
منابع مشابه
A methodology for assessing the effect of correlations among muscle synergy activations on task-discriminating information
Muscle synergies have been hypothesized to be the building blocks used by the central nervous system to generate movement. According to this hypothesis, the accomplishment of various motor tasks relies on the ability of the motor system to recruit a small set of synergies on a single-trial basis and combine them in a task-dependent manner. It is conceivable that this requires a fine tuning of t...
متن کاملInvestigating Tibialis Anterior Muscle Activity Levels in Patients With Genu Varum During Single-Leg Jump-Landing Task
Purpose: This study aimed to investigate the effect of genu varum abnormality on the activity of the anterior leg calf muscle during single-leg jump-landing task. Methods: A total of 28 male students of Physical Education (Mean±SD age: 21.53±1.65 y, weight: 66.67±7.15 kg, height: 173.38±4.54 cm) were assigned into the genu varum (n=14) and normal knee (n=14) groups. Their level of activity of...
متن کاملInvestigation of Muscle Synergies Using Four Different Methods of Synergy Extraction While Running on a Treadmill in Beginner Runners
Introduction: The study of muscle synergy is a new way to evaluate the functioning of the human body's control system. Different mathematical methods are used to extract muscle synergies from electromyographic data, and this factor can cause different outputs in muscle synergies. Therefore, the aim of this study was to investigate muscle synergies using four different synergy extraction methods...
متن کاملEmpirical Evaluation of Voluntarily Activatable Muscle Synergies
The muscle synergy hypothesis assumes that individual muscle synergies are independent of each other and voluntarily controllable. However, this assumption has not been empirically tested. This study tested if human subjects can voluntarily activate individual muscle synergies extracted by non-negative matrix factorization (NMF), the standard mathematical method for synergy extraction. We defin...
متن کاملSpace-by-time decomposition for single-trial decoding of M/EEG activity
We develop a novel methodology for the single-trial analysis of multichannel time-varying neuroimaging signals. We introduce the space-by-time M/EEG decomposition, based on Non-negative Matrix Factorization (NMF), which describes single-trial M/EEG signals using a set of non-negative spatial and temporal components that are linearly combined with signed scalar activation coefficients. We illust...
متن کامل